منابع مشابه
Sliding charge-density wave in manganites.
Stripe and chequerboard phases appear in many metal oxide compounds, and are thought to be linked to exotic behaviour such as high-temperature superconductivity and colossal magnetoresistance. It is therefore extremely important to understand the fundamental nature of such phases. The so-called stripe phase of the manganites has long been interpreted as the localization of charge at atomic site...
متن کاملCharge-density-wave phase slip in NbSe3
We have studied the phase-slip process by which charge-density-wave (CDW) current is converted to single-particle current at electrical contacts. Transport and X-ray scattering measurements indicate that an excess voltage Vps dropped between current contacts induces a large static deformation of the CDW phase. The measured Vpsand temperature-dependent phase-slip rates are consistent with a mode...
متن کاملCoexistence of charge-density-wave and pair-density-wave orders in underdoped cuprates.
We analyze incommensurate charge-density-wave (CDW) and pair-density-wave (PDW) orders with transferred momenta (±Q,0)/(0,±Q) in underdoped cuprates within the spin-fermion model. Both orders appear due to an exchange of spin fluctuations before magnetic order develops. We argue that the ordered state with the lowest energy has nonzero CDW and PDW components with the same momentum. Such a state...
متن کاملCharge density wave in graphene: magnetic-field-induced Peierls instability
We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2015
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.92.235153